Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Molecules ; 29(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611932

RESUMO

Microplastics have garnered an infamous reputation as a sorbate for many concerning environmental pollutants and as a delivery vehicle for the aquatic food chain through the ingestion of these contaminated small particulates. While sorption mechanisms have been extensively studied for polycyclic aromatic hydrocarbons, polycyclic aromatic sulfur heterocycles (PASHs) have not been investigated, partly due to their low concentrations in aquatic ecosystems. Herein, an analytical methodology is presented for the analysis of dibenzothiophene, benzo[b]naphtho[1,2-b]thiophene, benzo[b]naphtho[2,1-b]thiophene, benzo[b]naphtho[2,3-b]thiophene, chryseno[4,5-bcd]thiophene and dinaphtho[1,2-b:1',2'-d]thiophene at relevant environmental concentrations based on solid phase extraction and high-performance liquid chromatography. The sorption uptake behavior and the sorption kinetics of the three benzo[b]napthothiophene isomers were then investigated on nylon microplastics to provide original information on their environmental fate and avoid human contamination through the food chain. The obtained information might also prove relevant to the development of successful remediation approaches for aquatic ecosystems.

2.
Food Chem ; 447: 138936, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461717

RESUMO

Rhodamine B is a synthetic dye known to enhance the visual appearance of chili powder. Due to its toxicity and carcinogenicity, chromatographic methods have been developed to monitor its presence in adulterated chili powder, but their assays are laborious, time consuming and expensive for screening purposes. The present studies propose an alternative for screening Rhodamine B in chili powder samples. The method combines thin layer chromatography (TLC) to solid surface room-temperature fluorescence spectroscopy. The scrape-dissolution procedure common to the instrumental analysis of TLC procedures was replaced with a fiber optic probe coupled to a commercial spectrofluorometer. The determination of Rhodamine B on the chromatographic plate is based on its retardation factor and maximum excitation and emission wavelengths. The limit of detection (1.9 ng.mL-1) and the limit of quantitation (5.2 ng.mL-1) are well below the usual contamination of Rhodamine B in adulterated foods.


Assuntos
Pós , Rodaminas/análise , Cromatografia em Camada Fina
3.
Anal Chim Acta ; 1279: 341835, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827650

RESUMO

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) with molecular mass 302 Da are the most investigated PAHs within the high molecular weight PAHs class. This PAH class contributes to a significant portion of the mutagenic and/or carcinogenic response associated to the PAH fraction present in environmental and combustion-related samples. Several reasons prevent the routine analysis of 302 Da PAHs in environmental samples, including large number of possible isomers, limited number of commercially available reference standards, and low concentration levels. RESULTS: These studies search for a newly synthetized dibenzo-fluoranthene of molecular mass 302 Da, namely dibenzo[b,l]fluoranthene, in a standard reference material (SRM 1597a) from the National Institute of Standards and Technology. The eluting behavior of dibenzo[b,l]fluoranthene is investigated under reversed-phase liquid chromatographic conditions for its determination via absorption and fluorescence detection. Vibrationally resolved spectra and fluorescence lifetimes recorded from octane matrices at 77 K and 4.2 K allow for its qualitative and quantitative analysis at the parts-per-trillion concentration levels. Its unambiguous determination is then reported for the first time in the SRM 1597a. SIGNIFICANCE AND NOVELTY: Of the 89 possible 302 Da PAH isomers, only 23 isomers have been identified in SRMs and/or environmental samples. The determination of dibenzo[b,l]fluoranthene in the SRM 1597a takes a step forward to fulfilling this gap.

4.
Molecules ; 28(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37570768

RESUMO

Due to the relatively high concentrations of polycyclic aromatic hydrocarbons (PAHs) in oil samples, oil spills in aquatic ecosystems release significant amounts of PAHs. Although remediation efforts often take place during or immediately after an oil spill incident, a portion of the released PAHs remains in the body of water. A natural phenomenon resulting from the direct exposure of PAHs to sunlight is photodegradation. This article investigates the effect of dioctyl sulfosuccinate (DOSS) on the photodegradation of benzo[a]pyrene (BaP), the most toxic PAH in the priority pollutants list of the US Environmental Protection Agency (EPA). DOSS is a surfactant typically used in the remediation of oil spills. Three lamps with maximum emission wavelengths at 350 nm, 419 nm, and 575 nm were individually and simultaneously used to irradiate aqueous solutions of BaP in the absence and the presence of DOSS. When irradiated with the 419 nm lamp or the 575 lamp, BaP showed no photodegradation. Upon irradiation with the 350 nm lamp and with the simultaneous use of the three lamps, the photodegradation of BaP followed first-order kinetics. Independent of the irradiation wavelength, the presence of DOSS increased the half-life of BaP in the aqueous solution. In the case of the 350 nm lamp, the rate constant of photodegradation in the absence and the presence of DOSS varied from (3.79 ± 0.97) × 10-3 min-1 to (1.10 ± 0.13) × 10-3 min-1, respectively. Under simultaneous irradiation with the lamps, the rate constant of photodegradation varied from (1.12 ± 0.35) × 10-3 min (no DOSS) to (3.30 ± 0.87) × 10-4 (with DOSS). Since the largest rate constants of photodegradation were observed in the absence of DOSS, the longer half-lives of BaP in the presence of surfactant were attributed to the incorporation of PAH molecules into the DOSS micelles.

5.
Anal Methods ; 15(16): 1959-1968, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37017264

RESUMO

High performance liquid chromatography is widely used for the analysis of polycyclic aromatic hydrocarbons in a wide variety of samples. Of particular concern are benzo[a]pyrene and dibenzo[a,l]pyrene, two of the most toxic polycyclic aromatic hydrocarbons ever tested. Under EPA method 610, these two compounds co-elute with almost identical retention times. Our studies demonstrate the feasibility of directly determining them in a chromatographic fraction without further separation. Their unambiguous determination is based on spectral and lifetime information with a two-step experimental procedure consisting of the evaporation of the chromatographic fraction followed by the dissolution of the residue with microliters of n-octane. With the aid of a 77 K fiber optic probe, limits of detection at the parts-per-billion concentration level (ng mL-1) are obtained from the microliter sample via laser excited time resolved Shpol'skii spectroscopy. This approach is then applied to the analysis of benzo[a]pyrene and dibenzo[a,l]pyrene in tobacco extracts.

6.
J Toxicol Environ Health B Crit Rev ; 26(1): 28-65, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617662

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are legacy pollutants of considerable public health concern. Polycyclic aromatic hydrocarbons arise from natural and anthropogenic sources and are ubiquitously present in the environment. Several PAHs are highly toxic to humans with associated carcinogenic and mutagenic properties. Further, more severe harmful effects on human- and environmental health have been attributed to the presence of high molecular weight (HMW) PAHs, that is PAHs with molecular mass greater than 300 Da. However, more research has been conducted using low molecular weight (LMW) PAHs). In addition, no HMW PAHs are on the priority pollutants list of the United States Environmental Protection Agency (US EPA), which is limited to only 16 PAHs. However, limited analytical methodologies for separating and determining HMW PAHs and their potential isomers and lack of readily available commercial standards make research with these compounds challenging. Since most of the PAH kinetic data originate from animal studies, our understanding of the effects of PAHs on humans is still minimal. In addition, current knowledge of toxic effects after exposure to PAHs may be underrepresented since most investigations focused on exposure to a single PAH. Currently, information on PAH mixtures is limited. Thus, this review aims to critically assess the current knowledge of PAH chemical properties, their kinetic disposition, and toxicity to humans. Further, future research needs to improve and provide the missing information and minimize PAH exposure to humans.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Animais , Humanos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental/métodos , Corpo Humano , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Carcinógenos
7.
Crit Rev Anal Chem ; 53(8): 1638-1697, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35254870

RESUMO

Analytical techniques for chemical analysis of oil, oil photochemical and biological transformation products, and dispersants and their biodegradation products benefited significantly from research following the 2010 Deepwater Horizon (DWH) disaster. Crude oil and weathered-oil matrix reference materials were developed based on the Macondo well oil and characterized for polycyclic aromatic hydrocarbons, hopanes, and steranes for use to assure and improve the quality of analytical measurements in oil spill research. Advanced gas chromatography (GC) techniques such as comprehensive two-dimensional GC (GC × GC), pyrolysis GC with mass spectrometry (MS), and GC with tandem MS (GC-MS/MS) provide a greater understanding at the molecular level of composition and complexity of oil and weathering changes. The capabilities of high-resolution MS (HRMS) were utilized to extend the analytical characterization window beyond conventional GC-based methods to include polar and high molecular mass components (>400 Da) and to provide new opportunities for discovery, characterization, and investigation of photooxidation and biotransformation products. Novel separation approaches to reduce the complexity of the oil and weathered oil prior to high-resolution MS and advanced fluorescence spectrometry have increased the information available on spilled oil and transformation products. HRMS methods were developed to achieve the required precision and sensitivity for detection of dispersants and to provide molecular-level characterization of the complex surfactants. Overall, research funding following the DWH oil spill significantly advanced and expanded the use of analytical techniques for chemical analysis to support petroleum and dispersant characterization and investigations of fate and effects of not only the DWH oil spill but future spills.


Assuntos
Desastres , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Poluição por Petróleo/análise , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Petróleo/análise , Poluentes Químicos da Água/análise
8.
Anal Chem ; 94(35): 12078-12085, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35998416

RESUMO

The increasing accessibility of 3D printers makes their use for criminal activity more likely. Current forensic analysis of trace evidence left by 3D-printed materials focuses on identifying the general type of plastic, which includes acrylonitrile butadiene styrene, polylactic acid, nylon, polycarbonate, polyethylene terephthalate, and chlorinated polyethylene. Herein, we present a nondestructive approach capable of differentiating among different types of nylons. The new approach is based on room-temperature fluorescence spectroscopy. Excitation-emission matrices, excitation and emission spectra, and synchronous fluorescence spectra are directly recorded from single microplastics with the aid of a fiber-optic probe coupled to a commercial spectrofluorometer. The comparison of spectral features demonstrates the capability to differentiate microparticles originating from Nylon 11, Nylon 12, Nylon 6/6, and Nylon 6/12. The observed differences are attributed to the presence of fluorescent impurities embedded in the polymer during its fabrication. The outstanding matching of excitation-emission matrices, excitation and emission spectra, and synchronous fluorescence spectra demonstrates the potential of this approach to link trace evidence to a specific source beyond its general plastic type.


Assuntos
Nylons , Plásticos , Nylons/química , Polietilenotereftalatos , Espectrometria de Fluorescência/métodos , Temperatura
9.
Anal Methods ; 12(32): 3998-4006, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32725004

RESUMO

We present for the first time experimental evidence on the line-narrowing effect caused by primary alcohols on the spectral features of metabolites of polycyclic aromatic hydrocarbons at 77 K and 4.2 K. The investigated metabolites include 1-hydroxypyrene, 2-hydroxyfluorene, 9-hydroxyphenanthrene, 3-hydroxybenzo[a]pyrene, 4-hydroxybenzo[a]pyrene, 5-hydroxybenzo[a]pyrene, B[a]P-trans-7,8-dihydrodiol (±), B[a]P-trans-9,10-dihydrodiol (±), B[a]P-r-7,t-8-dihydrodiol-c-9,10-epoxide (±) and B[a]P-r-7,t-8-dihydrodiol-t-9,10-epoxide(±). The narrowest spectra and highest fluorescence enhancements were observed by matching the length of the alcohol to the length of the n-alkane that best fits the molecular dimensions of the parent polycyclic aromatic hydrocarbons. The analytical figures of merit show potential for the qualitative and quantitative analysis of PAH metabolites via Shpol'skii Spectroscopy.

10.
Photochem Photobiol ; 96(6): 1176-1181, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32562274

RESUMO

Utilizing organisms as sources of fluorophores relieves the demand for petroleum feedstock in organic synthesis of fluorescent products, and endophytic fungi provide a promising vein for natural fluorescent products. We report the characterization of a pH-responsive fluorophore from an endophytic fungus isolated from sand pine. The endogenous fluorescence of the live organism was measured using fluorescence microscopy. Computational interpretation of the spectra was accomplished with time-dependent density functional theory methods. The combined use of experimental and theoretically predicted spectra revealed the pH equilibria and photoexcited tautomerization of the natural product, 5-methylmellein. This product shows promise both as a stand-alone pH-indicating fluorophore, with alkaline pKa , and as "green" feedstock for synthesis of custom fluorophores.


Assuntos
Concentração de Íons de Hidrogênio , Simulação por Computador , Corantes Fluorescentes/química , Isomerismo , Microscopia de Fluorescência , Espectrometria de Fluorescência/métodos
11.
Talanta ; 212: 120805, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32113567

RESUMO

The present study investigates the analytical potential of low-temperature photoluminescence spectroscopy for the analysis of seven phenanthrothiophenes with molecular mass 234 g mol-1. The studied PASHs include Phenanthro [1,2-b]thiophene, Phenanthro [2,1-b]thiophene, Phenanthro [2,3-b]thiophene, Phenanthro [3,2-b]thiophene, Phenanthro [3,4-b]thiophene, Phenanthro [4,3-b]thiophene and Phenanthro [9,10-b]thiophene. Excitation and emission spectra recorded from n-alkane solutions at room temperature, 77 K and 4.2 K show phosphorescence emission from all the studied isomers at cryogenic temperatures. The analytical figures of merit obtained under steady state (fluorescence) and time-resolved (phosphorescence) conditions provide limits of detection at the parts-per-billion (ng mL-1) concentration levels. Processing 77 K and 4.2 K phosphorescence data with parallel factor analysis showed to be a robust approach to the determination of phenanthro-thiophenes in complex fluorophore mixtures.

12.
Anal Chim Acta ; 1100: 163-173, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987137

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are some of the most common environmental pollutants encountered worldwide. Eco-toxicological studies attribute a significant portion of the biological activity of PAH contaminated samples to the presence of high molecular weight PAHs (HMW-PAHs), i.e. PAHs with molecular mass (MM) greater than 300 Da. The research presented here focuses on the analysis of PAH isomers of MM 302 Da. This is not a trivial task. There are 23 isomers with MM 302 Da available to commercial and academic researchers. Many of them are difficult to separate in the chromatographic column and have virtually identical fragmentation patterns. The selectivity of HPLC absorption and fluorescence detectors is modest for resolving co-eluting isomers. Previous work in our lab demonstrated the potential of laser excited time-resolved Shpol'skii spectroscopy (LETRSS) for the analysis of 302 Da isomers in HPLC fractions. The main limitation of the technique was instrumental and due to the narrow range of excitation wavelengths of the tunable dye laser used for sample excitation. Herein, we remove this limitation with an optical parametric oscillator (OPO)-based wavelength tuning laser that covers the whole excitation range of 302 Da isomers. It is possible now to excite each isomer at its excitation wavelength for maximum fluorescence emission and reach limits of detection at the parts-per-trillion level (pg.mL-1). The excitation bandwidth of the OPO laser (0.2 nm) is a good match for the narrow excitation spectra of 302 Da isomers in n-octane. This feature, associated to unique vibrational fluorescence profiles and lifetime decays, allows for the unambiguous identification of co-eluting isomers in RPLC fractions. The same is true for their quantitative analysis in coal tar samples.

14.
J Am Chem Soc ; 141(28): 11298-11303, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31265284

RESUMO

Preparing crystalline materials that produce tunable organic-based multicolor emission is a challenge due to the inherent inability to control the packing of organic molecules in the solid state. Utilizing multivariate, high-symmetry metal-organic frameworks, MOFs, as matrices for organic-based substitutional solid solutions allows for the incorporation of multiple fluorophores with different emission profiles into a single material. By combining nonfluorescent links with dilute mixtures of red, green, and blue fluorescent links, we prepared zirconia-type MOFs and found that the bulk materials exhibit features of solution-like fluorescence. Our study found that MOFs with a fluorophore link concentration of around 1 mol % exhibit fluorescence with decreased inner filtering, demonstrated by changes in spectral profiles, increased quantum yields, and lifetime dynamics expected for excited-state proton-transfer emitters. Our findings enabled us to prepare organic-based substitutional solid solutions with tunable chromaticity regulated only by the initial amounts of fluorophores. These materials emit multicolor and white light with high quantum yields (∼2-14%), high color-rendering indices (>93), long shelf life, and superb hydrolytic stability at ambient conditions.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 213: 375-383, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30721853

RESUMO

A novel chemosensor is presented for the detection of inorganic phosphate (Pi) in environmental water samples. The sensing solution is comprised of terbium (Tb3+) chelated to ethylenediaminetetraacetic acid (EDTA) acid and cetyltrimethylammonium bromide (CTAB)-capped gold nanoparticles (Au NPs). Upon mixing, Tb-EDTA and Au NPs undergo FÓ§rster resonance energy transfer (FRET) in which the luminescence from the lanthanide ion is quenched. Upon the addition of Pi, Au NPs aggregate and precipitate out of solution. The aggregation of Au NPs results in the restoration of the Tb-EDTA luminescence signal, which correlates linearly to the Pi concentration in the matrix of analysis. The limit of detection (LOD) of the luminescence sensor (83 ng·mL-1) is within the range of LODs previously reported for on-site monitoring of Pi. Quantitative analysis carried out via the multiple standard additions method provides accurate determination of Pi concentrations in heavily contaminated environmental waters.

16.
Anal Bioanal Chem ; 410(17): 4177-4188, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29732496

RESUMO

The research described here provides the most comprehensive qualitative characterization of three combustion-related standard reference materials (SRMs) for polycyclic aromatic sulfur heterocycles (PASHs) and some alkyl-substituted (alkyl-) derivatives to date: SRM 1597a (coal tar), SRM 1991 (coal tar/petroleum extract), and SRM 1975 (diesel particulate extract). An analytical approach based on gas chromatography/mass spectrometry (GC/MS) is presented for the determination of three-, four-, and five-ring PASH isomers and three- and four-ring alkyl-PASHs in the three SRM samples. The benefit of using a normal-phase liquid chromatography (NPLC) fractionation procedure prior to GC/MS analysis was demonstrated for multiple isomeric PASH groups. Using a semi-preparative aminopropyl (NH2) LC column, the three combustion-related samples were fractionated based on the number of aromatic carbon atoms. The NPLC-GC/MS method presented here allowed for the following identification breakdown: SRM 1597a - 35 PASHs and 59 alkyl-PASHs; SRM 1991-31 PASHs and 58 alkyl-PASHs; and SRM 1975-13 PASHs and 25 alkyl-PASHs. These identifications were based on NPLC retention data, the GC retention times of reference standards, and the predominant molecular ion peak in the mass spectrum. Prior to this study, only 11, 1, and 0 PASHs/alkyl-PASHs had been identified in SRM 1597a, SRM 1991, and SRM 1975, respectively. Graphical abstract NPLC-GC/MS analysis for the three- and four-ring parent PASH isomers in SRM 1597a.

17.
J Org Chem ; 83(15): 8036-8053, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29786432

RESUMO

A library of 12 dibenzo- and naphtho-fluoranthene polycyclic aromatic hydrocarbons (PAHs) with MW = 302 (C24H14) was synthesized via a Pd-catalyzed fluoranthene ring-closing reaction. By understanding the various modes by which the palladium migrates during the transformation, structural rearrangements were bypassed, obtaining pure PAHs in high yields. Spectroscopic and electrochemical characterization demonstrated the profound diversity in the electronic structures between isomers. Highlighting the significant differences in emission of visible light, this library of PAHs will enable their standardization for toxicological assessment and potential use as optoelectronic materials.

18.
Anal Methods ; 102018.
Artigo em Inglês | MEDLINE | ID: mdl-31093300

RESUMO

The identification of isomeric polycyclic aromatic hydrocarbons (PAHs) in complex samples via reversed-phase liquid chromatography (RPLC) with fluorescence detection (FL) is normally based on matching the chromatographic retention times of suspected peaks of interest with reference standards. Since no spectral information is obtained during the chromatographic run, the accurate identification of co-eluting PAHs with similar chromatographic behaviors requires confirmation with additional chromatographic methods. This is particularly true for the analysis of PAH isomers with the relative molecular mass (MM, g/mol) 302. The work presented here explores the information content of room-temperature fluorescence spectra for the analysis of PAHs with MM 302 in the Standard Reference Material (SRM) 1597a. Fluorescence spectra were recorded under stop-flow conditions with the aid of a commercial HPLC system. Of the 21 MM 302 PAHs known to be present in the SRM 1597a, 20 were tentatively identified based on retention times and the presence of 18 was confirmed based on excitation and emission spectral profiles.

19.
Anal Bioanal Chem ; 410(5): 1511-1524, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29238863

RESUMO

Retention indices for 67 polycyclic aromatic sulfur heterocycles (PASHs) and 80 alkyl-substituted PASHs were determined using normal-phase liquid chromatography (NPLC) on an aminopropyl (NH2) stationary phase. The retention behavior of PASH on the NH2 phase is correlated with the number of aromatic carbon atoms and two structural characteristics have a significant influence on their retention: non-planarity (thickness, T) and the position of the sulfur atom in the bay-region of the structure. Correlations between solute retention on the NH2 phase and T of PASHs were investigated for three cata-condensed (cata-) PASH isomer groups: (a) 13 four-ring molecular mass (MM) 234 Da cata-PASHs, (b) 20 five-ring MM 284 Da cata-PASHs, and (c) 12 six-ring MM 334 Da cata-PASHs. Correlation coefficients ranged from r = -0.49 (MM 234 Da) to r = -0.65 (MM 334 Da), which were significantly lower than structurally similar PAH isomer groups (r = -0.70 to r = -0.99). The NPLC retention behavior of the PASHs are compared to similar results for PAHs.

20.
Anal Bioanal Chem ; 409(21): 5171-5183, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28664340

RESUMO

A normal-phase liquid chromatography (NPLC) fractionation procedure was developed for the characterization of a complex mixture of polycyclic aromatic hydrocarbons (PAHs) from a coal tar sample (Standard Reference Material (SRM) 1597a). Using a semi-preparative aminopropyl (NH2) LC column, the coal tar sample was separated using NPLC based on the number of aromatic carbons; a total of 14 NPLC fractions were collected. SRM 1597a was analyzed before and after NPLC fractionation by using gas chromatography/mass spectrometry (GC/MS) with a 50% phenyl stationary phase. The NPLC-GC/MS method presented in this study allowed for the identification of 72 PAHs and 56 MePAHs. These identifications were based on the NPLC retention times for authentic reference standards, GC retention times for authentic reference standards, and the predominant molecular ion peak in the mass spectrum. Most noteworthy was the determination of dibenzo[a,l]pyrene, which could not be measured directly by GC/MS because of low concentration and co-elution with dibenzo[j,l]fluoranthene. The NPLC-GC/MS procedure also allowed for the tentative identification of 74 PAHs and 117 MePAHs based on the molecular ion peak only. This study represents the most comprehensive qualitative characterization of SRM 1597a to date. Graphical abstract NPLC-GC/MS analysis for the six-ring MM 302 Da PAH isomers in SRM 1597a.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA